



# "Inventario de emisiones de maquinaria fuera de ruta para la región Metropolitana"



#### INDIVIDUALIZACIÓN DE LA EMPRESA CONSULTORA

| Nombre o Razón Social     | Ingeniería y Gestión Ambiental ParticuoloTech Limitada |  |
|---------------------------|--------------------------------------------------------|--|
| Nombre de Fantasía        | PARTICULAS                                             |  |
| RUT                       | 76.398.593-8                                           |  |
| Tipo de Empresa           | Servicios de Ingeniería                                |  |
| Condición de Nacionalidad | Chilena                                                |  |
| Representante Legal       |                                                        |  |
| Nombre                    | Luis Alonso Díaz Robles                                |  |
| Rut                       | 11.162.556-5                                           |  |
| e-mail                    | luisdiazrobles@particulas.cl                           |  |
| Domicilio Legal en Chile  |                                                        |  |
| Dirección                 | La Concepción 191, Oficina 601, Providencia            |  |
| Teléfonos                 | 56 9 79775810                                          |  |
| web                       | www.particulas.cl                                      |  |
| e-mail                    | contacto@particulas.cl                                 |  |

#### **DATOS DE CONTACTO**

| Nombre | Odel Gallardo Co | ontreras               |     |
|--------|------------------|------------------------|-----|
| Cargo  | Gerente Comerc   | ial                    |     |
| e-mail | contacto@partic  | culas.cl               |     |
| Fono   |                  | Celular 56 9 5322 7950 | Fax |



# "Inventario de emisiones de maquinaria fuera de ruta para la región Metropolitana"

# **INFORME 1**

#### Preparado por:

#### PARTICUOLOTECH LTDA.

| Versión del Documento                  |                          |                        | 1                       |
|----------------------------------------|--------------------------|------------------------|-------------------------|
| Responsables Elaboración de<br>Informe |                          | Responsable Revisión   | Responsable Aprobación  |
| Nombre:                                | Isidora González Zubieta | Fidel Vallejo Gallardo | Luis Alonso Díaz Robles |
| Cargo:                                 | Ingeniera de Proyectos   | Gerente de Operaciones | Jefe de Proyecto        |
| 901                                    | Ingeniera Civil Química  |                        | Gerente General         |
| Fecha:                                 | 03-03-2022               | 03-03-2022             | 03-03-2022              |



# CONTENIDO

| 1 INTRODUCCIÓN                                                    | 7  |
|-------------------------------------------------------------------|----|
| 2 OBJETIVOS                                                       | 8  |
| 2.1 Objetivo general                                              | 8  |
| 2.2 Objetivos específicos                                         | 8  |
| 3 METODOLOGÍA                                                     | 9  |
| 3.1 Inventario de Emisiones                                       | 9  |
| 3.2 Depuración base de datos de aduana                            | 10 |
| 3.2.1 Tipología                                                   | 11 |
| 3.2.2 Potencia                                                    | 12 |
| 3.2.3 Rubro                                                       | 13 |
| 3.2.4 Combustible                                                 | 15 |
| 3.2.5 Nivel tecnológico                                           | 15 |
| 3.2.6 Origen y antigüedad                                         | 17 |
| 3.3 Asignación geográfica                                         | 17 |
| 3.4 Información faltante y supuestos para el cálculo de emisiones | 18 |
| 4 RESULTADOS                                                      | 23 |
| 4.1 Participación según clasificaciones                           | 23 |
| 4.2 Emisiones                                                     | 28 |
| 5 CONCLUSIONES                                                    | 32 |
| C DIDLIOCDATÍA                                                    | 22 |



| ÍNDICE DE TABLAS                                                                              |     |
|-----------------------------------------------------------------------------------------------|-----|
| Tabla 1 Tipologías y definiciones de maquinaria móvil fuera de carretera(CALAC, 2021)         | 11  |
| Tabla 2 Ejemplo de clasificación y asignación de la potencia del motor según códigos          |     |
| arancelarios                                                                                  | 12  |
| Tabla 3 Clasificación de MMFR según tipo de rubro                                             | 13  |
| Tabla 4 Clasificación de tipología según rubro                                                |     |
| Tabla 5 Equivalencia entre estándares de emisión europeo y estadounidense                     | 15  |
| Tabla 6 Estándar de emisiones de MMFR en distintos países del mundo                           | 16  |
| Tabla 7 Criterios utilizados para la distribución de la flota dentro de la Región Metropolita | na  |
|                                                                                               | 17  |
| Tabla 8 Porcentaje de participación para la RM                                                | 18  |
| Tabla 9. Horas de operación y factor de carga para la tipología seleccionada                  |     |
| Tabla 10. Factor de deterioro para los contaminantes.                                         |     |
| Tabla 11 Factor de ajuste transitorio para maquinaria móvil fuera de ruta y los distintos     |     |
| contaminantes                                                                                 | 20  |
| Tabla 12 Participación de MMFR en la Región Metropolitana según tipo de rubro                 | 23  |
| Tabla 13 Participación de la flota según tipo de rango de potencia.                           | 24  |
| Tabla 14 Participación de la maquinaria según tipo de tecnología (supuesto Tier 2)            | 25  |
| Tabla 15 Participación de la maquinaria según tipo de tecnología y rubro (supuesto Tier 2)    | 26  |
| Tabla 16 Participación de la maquinaria según tipo de tecnología y rubro (supuesto Tier 4)    | 26  |
| Tabla 17 Participación de la maquinaria según origen (Elaboración propia)                     | 27  |
| Tabla 18 Emisiones en [ton/año] en la Región Metropolitana, clasificado por tipo de rubro     | )   |
| utilizando supuesto de Tier 4                                                                 | 28  |
| Tabla 19 Emisiones en [ton/año] en la Región Metropolitana, clasificado por tipo de rubro     | )   |
| utilizando supuesto de Tier 2                                                                 |     |
|                                                                                               |     |
| (NDICE DE FICUDAC                                                                             |     |
| ÍNDICE DE FIGURAS                                                                             | 2.4 |
| Figura 1. Participación de MMFR dentro de RM según rubro (Elaboración propia)                 |     |
| Figura 2 Participación de la flota según rango de potencia (Elaboración propia)               | 25  |
| Figura 3 Participación de la maquinaria según tipo de tecnología (supuesto Tier 2) –          | 2.0 |
| Elaboración propia                                                                            |     |
| Figura 4 Participación de la maquinaria según origen (Elaboración propia 2023)                |     |
| Figura 5 Distribución de emisiones dentro de la RM para MMFR (Utilizando supuesto de T        |     |
| 4) – Fuente: Elaboración propia                                                               |     |
| Figura 6 Distribución de emisiones dentro de la RM para MMFR (Utilizando supuesto de T        |     |
| 2) – Fuente: Elaboración propia                                                               |     |
| - Figura / Comparación de emisiones de Tier 4- Herz dentro de la KIVI (Elaboración probla).   | 30  |



| Figura 8 Distribución de las emisiones de MMFR según rubro dentro de la RM, utilizando |    |
|----------------------------------------------------------------------------------------|----|
| supuesto de Tier 4 (Elaboración propia)                                                | 30 |
| Figura 9 Distribución de las emisiones de MMFR según rubro dentro de la RM, utilizando |    |
| supuesto de Tier 2 (Elaboración propia).                                               | 31 |



#### 1.- INTRODUCCIÓN

El D.S. N°31/2016 del MMA, del 24 de noviembre del 2017, que establece el Plan de Prevención y Descontaminación Atmosférica (PPDA) para la Región Metropolitana de Santiago, tiene como objetivo el cumplimiento a la norma primaria de calidad ambiental de aire. EL PPDA identifica en su inventario de emisiones de 2015, el sector de maquinaria móvil fuera de ruta (MMFR) como uno de los principales aportadores de las emisiones de  $MP_{2,5}$  (20%) y  $NO_X$  (60%) en la región. En la actualidad 2022, existe un avance tanto del crecimiento de la región como también de las mejoras tecnológicas en control de emisiones aportan un grado de incertidumbre a cuál es la cantidad efectiva de emisiones de este sector.

El presente informe detalla el inventario de emisiones de maquinaria móvil fuera de ruta para la región Metropolitana. Como base para esto se tomará el inventario nacional de MMFR desarrollado el año 2021 por el Ministerio de Medio Ambiente (MMA). El presente informe tiene como objetivo el proceso de actualización del inventario de emisiones de MMFR del PPDA. La metodología de este inventario nacional está basada en dos documentos, en primer lugar, en el "Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling" (EPA, 2010), que aporta con la fórmula general de obtención de emisiones, y, en segundo lugar, Non Road Mobile Machinery (EMEP/EEA, 2019b), que aporta con factores de emisión y parámetros más actualizados que los indicados por la EPA.



#### 2.- OBJETIVOS

#### 2.1.- OBJETIVO GENERAL

Desarrollar un inventario de emisiones de maquinaria móvil fuera de ruta de la Región Metropolitana de Santiago (RM), en base al inventario nacional, año 2018, desarrollado por el MMA.

#### 2.2.- OBJETIVOS ESPECÍFICOS

- Identificar la información necesaria para el inventario regional, presentado en el inventario nacional.
- 2. Depurar base de datos de la aduana en el periodo de 2011 a 2021.
- Realizar los cálculos para el inventario de emisiones de maquinaria fuera de ruta de la RMS.



#### 3.- METODOLOGÍA

#### 3.1.- INVENTARIO DE EMISIONES

A nivel nacional, existe un inventario nacional que estimó las emisiones de Maquinaria Móvil Fuera de Ruta (MMFR) generadas el año 2018, el cual corresponde al "Inventario Nacional y Proyecciones de Emisiones de Maquinaria móvil fuera de ruta", el cual fue elaborado en el marco de Programa Clima y Aire Limpio en Ciudades de América Latina- CALAC+ (CALAC, 2021).

Este proyecto desarrolló un inventario de MMFR para la Región Metropolitana, basándose en dicho inventario nacional. Para ello, la primera actividad realizada consistió en la revisión del inventario nacional con la finalidad de identificar la información necesaria para el desarrollo de un inventario regional. Tambiénse revisó de manera referencial el modelo de emisiones para la componente en ruta y no en carretera de la EPA (MOVES) definida en sus respectivos reportes técnicos de la Agencia Ambiental Europea (EEA) (US EPA, 2018).

El algoritmo para la estimación de las emisiones provenientes de la operación de maquinaria móvil fuera de ruta está dado por la siguiente ecuación:

$$E_{i,j} = h \times P_i \times (1 + FD_i) \times FC_i \times TAF_i \times FE_{Base\ i,j}$$

#### Donde:

- $E_{i,j}$ : Emisiones del contaminante j, de la maquinaria i, en [g/año].
- $h_i$ : Horas de utilización de la maquinaria i, en [h/año].
- $P_i$ : Potencia del tipo de maquinaria i, en [kW].
- FD<sub>i</sub>: Factor de deterioro de la maquinaria i, adimensional.
- $FC_i$ : Factor de carga de la maquinaria i, adimensional.
- $TAF_i$ : Factor de ajuste transiente de la maquinaria i, adimensional.
- $FE_{Base}$ : Factor de emisión de contaminantes j, de la maquinaria i, en [g/kWh].

Esta metodología utiliza factores de emisión para la estimación de emisiones que provienen del capítulo 1.A.4 Non Road Mobile Machinery (Ole Kenneth, 2019), los cuales se encuentran sintetizados en la "Guía para la estimación de emisiones atmosféricas en la Región Metropolitana" en el apartado de "Combustión de maquinaria fuera de ruta" (MMA, 2019), donde son definidos en base a la potencia y la tecnología de la maquinaria.

En base a la revisión desarrollada, se identificó que para elaborar un inventario de emisiones de maquinaria fuera de ruta para la Región Metropolitana es necesario conocer:



- Cantidad de maquinaria por tipo y rubro
- Rubro
- Potencia
- Tecnología
- Horas de operación
- Edad
- Factor de carga y deterioro
- Asignación geográfica

Para cada uno de estos ítems el Inventario Nacional y Proyecciones de Emisiones de Maquinaria móvil fuera de ruta desarrollado por CALAC+, utiliza información y supuestos que se utilizaron dentro de los cálculos para las emisiones.

#### 3.2.- DEPURACIÓN BASE DE DATOS DE ADUANA

Esté inventario fue realizado con una base de información en la fuente de datos de la "Declaración de importaciones (DIN). Servicio Nacional de Aduanas, la cual incluye información en el periodo de 2010 a 2021, información que fue extraída el 15 de diciembre del año 2022 en base a lo solicitado en los códigos arancelarios que corresponden a la maquinaria móvil fuera de ruta segmentada según el tipo de potencia, está clasificación es mencionada a modo de ejemplo en la Tabla 2.

Para el desarrollo del inventario se rescató la metodología de calculo "Inventario Nacional y Proyecciones de Emisiones de Maquinaria móvil fuera de ruta", el cual fue elaborado en el marco de Programa Clima y Aire Limpio en Ciudades de América Latina- CALAC+. De la misma forma, este documento está basado en la "Guía Metodológica para la construcción de inventario de maquinaria móvil no de carretera (estimación de la población de maquinaria)" (CALAC+, 2020) herramienta que se utilizó para la depuración de la base de datos de aduana.

La base de datos incluye información con respecto al año de importación, país de origen, información de empresa importadora, además de una glosa descriptiva de otros parámetros que caracterizan a la mercadería tal como la potencia, maquinaria, tipo de combustible, etc. Toda la información anterior requiere una depuración y orden para realizar correctamente la clasificación de la flota y posterior cálculo de emisiones de cada una de ellas.

Para el presente inventario se consideraron MMFR con tipo de combustible diésel, gasolina y gas, además se consideró toda maquinaria MMFR con potencia menos a 19 kW y mayores a 560 kW, al igual que la normativa estadounidense desde Tier 0 a Tier 4.

Con el propósito de utilizar la base de datos para el cálculo de las emisiones, la información de mayor relevancia para la depuración es: tipología de maquinaria, potencia del motor, rubro,



tipo de combustible, antigüedad de la maquinaria, nivel tecnológico y origen. Se detalla en secciones independientes del presente informe cada uno de estos parámetros, lo que incluye los supuestos utilizados para sus cálculos (en su mayoría son similares a los mismos utilizados en el inventario 2020 de CALAC+)

#### 3.2.1.- TIPOLOGÍA

La caracterización del tipo de tecnología de la MMFR no puede tener variaciones en las designaciones. Las categorías que se le den dependerán del país en que se realice el estudio, por lo tanto para el presente inventario se rescató la tipología de referencia utilizada en guía (CALAC+, 2020), dado que la descripción de la mercadería contaba con información muy variada, se utilizó algoritmos computacionales para poder depurar de manera más eficiente la tipología mencionada en la Tabla 1. La columna que indica "Homologación Aduana" corresponde a algunos de los ejemplos de la descripción de la mercadería.

**Tabla 1** Tipologías y definiciones de maquinaria móvil fuera de carretera(CALAC, 2021).

| Tipología           | Homologación Aduana                                           |  |
|---------------------|---------------------------------------------------------------|--|
| Asfaltadora         | Pavimentadora, Terminadora, Maquina asfaltadora               |  |
| Barredora           | Barredora                                                     |  |
| Bulldozer           | Topadora frontal, bulldozer                                   |  |
| Camión fuera de     | Camión volquete, camión volteador, camión tolva y Dumper con  |  |
| carretera           | potencia superiores a 50 kW                                   |  |
| Cargador de troncos | Cargador de troncos, arrastrador de troncos.                  |  |
| Cargador Frontal    | Cargador, cargador frontal                                    |  |
| Cosechadora         | Cosechadora, maquina cosechadora, trilladora                  |  |
| Dumper              | Dumper con potencia menores a 50 kW                           |  |
| Excavadora          | Excavadora                                                    |  |
| Grúa Horquilla      | Montacargas, grúa horquilla perteneciente al rubro industrial |  |
| Grúa Horquilla todo | Grúa horquilla, montacargas pertenecientes a construcción,    |  |
| terreno             | minería, forestal y agricultura.                              |  |
| Grúa telescópica    | Grúa telescópica, grúas.                                      |  |
| Minicargador        | Minicargador                                                  |  |
| Miniexcavadora      | Miniexcavadora                                                |  |
| Motoniveladora      | Motoniveladora                                                |  |
| Manipulador         | Manipulador telescópico, manipulador                          |  |



| Tipología               | Homologación Aduana                                      |  |
|-------------------------|----------------------------------------------------------|--|
| Otros equipos agrícolas | Recolector agrícola, sembradora, sacudidor, maquina      |  |
|                         | vendimiadora                                             |  |
| Otros equipos de        | Tiendetubo                                               |  |
| construcción            |                                                          |  |
| Otros equipos en minas  | Maquina tunelera, máquina para hacer túneles             |  |
| subterráneas            |                                                          |  |
| Perforador              | Perforadora, perforador                                  |  |
| Plataforma telescópica  | Plataforma de elevación, plataforma tijeras, plataforma  |  |
|                         | telescópica                                              |  |
| Quitanieves             | Quitanieves                                              |  |
| Retroexcavadora         | Retroexcavadora                                          |  |
| Rodillo                 | Rodillo compactador, rodillo aplanador                   |  |
| Tractor                 | Tractores pertenecientes al rubro construcción y minería |  |
| Tractor agrícola        | Tractor perteneciente al rubro agrícola                  |  |
| Zanjadora               | Zanjadora                                                |  |

Fuente: Inventario nacional y proyecciones de emisiones de maquinaria móvil fuera de ruta (CALAC, 2021).

#### 3.2.2.- POTENCIA

Para el caso de la potencia del motor de la maquinaria, se puede rescatar esta información de la base de datos de la glosa descriptiva de la aduana, yviene en unidades de [HP] o [kW] la cual fue unificada a unidades de kW para los posteriores cálculos. Para la mercancía que no contaba con la potencia dentro de la descripción, fue asignado la mayor potencia dentro de su código arancelario correspondiente, como se muestra a modo de ejemplo en la Tabla 2, en donde solo se incluyeron una parte de las categorías.

**Tabla 2** Ejemplo de clasificación y asignación de la potencia del motor según códigos arancelarios

| Código arancelario | Descripción                                                                    |
|--------------------|--------------------------------------------------------------------------------|
| 8426.4110          | Con motor de potencia inferior a 19 kW                                         |
| 8426.4120          | Con motor de potencia superior o igual a 19 kW pero inferior a 37 kW           |
| 8426.4130          | Con motor de potencia superior o igual a 37 kW pero inferior a 56 kW           |
| 8426.4140          | Con motor de potencia superior o igual a 56 kW pero inferior a 75 kW           |
| 8426.4150          | Con motor de potencia superior o igual a 75 kW pero inferior a 130 kW          |
| 8426.4160          | Con motor de potencia superior o igual a 130 kW pero inferior o igual a 560 kW |
| 8426.4170          | Con motor de potencia superior a 560 kW                                        |



#### 3.2.3.- RUBRO

Considerando como base el inventario de CALAC+ y EEA 2013, Se muestra en la Tabla 3 la clasificación de la tipología de la maquinaria móvil fuera de ruta según rubro, en base a las citas mencionadas anteriormente.

Tabla 3 Clasificación de MMFR según tipo de rubro.

| Rubro        | MMFR                        |
|--------------|-----------------------------|
|              | Minicargador                |
|              | Asfaltadora/ Pavimentadora  |
|              | Bulldozer                   |
|              | Cargador frontal            |
|              | Excavadora                  |
|              | Grúa Horquilla              |
|              | Grúa Telescópica            |
| ión          | Máquina para hacer túneles  |
| Construcción | Miniexcavadora              |
| ıstr         | Motoniveladora              |
| Cor          | Plataforma telescópica      |
|              | Retroexcavadora             |
|              | Rodillo                     |
|              | Tiendetubo                  |
|              | Zanjadora                   |
|              | Manipulador                 |
|              | Perforadora                 |
|              | Dumper                      |
|              | Limpiadores de alta presión |
| Minería      | Motoniveladora              |
|              | Aeropuerto GSE              |
|              | Pavimentadora de asfalto    |
|              | Minicargador                |
|              | Perforador                  |
|              | Camión Tolva                |
|              | Retroexcavadora             |
|              | Cargador frontal            |

| Rubro      | MMFR                     |
|------------|--------------------------|
| ía         | Grúa horquilla           |
|            | Bulldozer                |
|            | Motoniveladora           |
| Ainería    | Maq. para hacer túneles  |
| Σ          | Dumper                   |
|            | Rodillo                  |
|            | Zanjadora                |
|            | Zanjadora                |
|            | Cosechadoras             |
|            | Tractores de dos ruedas  |
|            | Swatchers                |
| _          | Empacadoras agrícolas    |
| gricultura | Tractores                |
| icul       | Cosechadora              |
| Agr        | Desmalezador             |
|            | Sembradora               |
|            | Recolector agrícola      |
|            | Sacudidor                |
|            | Trilladora               |
|            | Deshojadora              |
| orestal    | Cosechadora (Forestal)   |
|            | Expedidor                |
|            | Tractores (Silvicultura) |
| Fore       | Cargador de troncos      |
| <u> </u>   | Arrastrador de troncos   |
|            | Rodillo                  |

Fuente: Inventario nacional y proyecciones de emisiones de maquinaria móvil fuera de ruta (CALAC, 2021).



Para el presente inventario se consideraron la siguiente clasificación de rubros:

- Agrícola-Forestal
- Construcción
- Industrial
- Minería

Dentro de esta clasificación se consideró que la MMFR importada solo aplica a un rubro en específico, para realizar está clasificación se consideró el mayor porcentaje de participación según rubro del inventario 2018, llegando a clasificar la tipología de maquinaria del actual inventario como se muestra en la Tabla 4.

Tabla 4 Clasificación de tipología según rubro.

| Rubro              | Tipología                           |
|--------------------|-------------------------------------|
| stal               | Cargador de troncos                 |
|                    | Cosechadora                         |
| ore                | Otros equipos agrícolas             |
| Іа-Е               | Rodillo                             |
| Agrícola-Forestal  | Tractor                             |
| Agı                | Tractor agrícola                    |
|                    | Zanjadora                           |
|                    | Asfaltadora                         |
|                    | Bulldozer                           |
|                    | Cargador frontal                    |
|                    | Excavadora                          |
| Construcción       | Grúa telescópica                    |
| חלט                | Manipulador                         |
| nstı               | Manipulador telescópico             |
| රි                 | Motoniveladora                      |
|                    | Otros equipos de construcción       |
|                    | Plataforma telescópica              |
|                    | Quitanieves                         |
|                    | Retroexcavadora                     |
| rial               | Barredora                           |
| lust               | Camión fuera de carretera           |
| Inc                | Grúa horquilla                      |
| Minería Industrial | Otros equipos en minas subterráneas |
| Min                | Perforador                          |

Fuente: Inventario nacional y proyecciones de emisiones de maquinaria móvil fuera de ruta (CALAC, 2021).



#### 3.2.4.- COMBUSTIBLE

En el presente inventario se considera los siguientes tipos de combustible:

- Diésel
- Gas
- Gasolina

Para asignación del tipo de combustible de la MMFR, se tuvo en cuenta dos posibilidades: en el caso de contar con la información en la glosa descriptiva, esta se mantuvo. Mientras que en el caso de no contar con dicha información se consideró el tipo de combustible Diésel.

#### 3.2.5.- NIVEL TECNOLÓGICO

Para el nivel tecnológico de la flota la cual permite calcular las emisiones durante la operación de la maquinaria, se han desarrollado estándares de emisiones para los motores de maquinaria en Estados Unidos y la Unión Europea, en la Tabla 5 se muestra la equivalencia entre ambas normativas de estándares de emisiones.

Tabla 5 Equivalencia entre estándares de emisión europeo y estadounidense

| Tier    | Stage      |  |  |  |
|---------|------------|--|--|--|
| Tier 0  | Stage I    |  |  |  |
| Tier 1  | Jiage I    |  |  |  |
| Tier 2  | Stage II   |  |  |  |
| Tier 3  | Stage IIIA |  |  |  |
| Tier 3B | Stage IIIA |  |  |  |
| Tier 4A | Stage IIIB |  |  |  |
| Tier 4B | Stage IV   |  |  |  |
| Tier 4  | Stage IV   |  |  |  |
| - · ·   |            |  |  |  |

Fuente: Elaboración propia 2023

Además, se utilizaron los estándares de emisión de MMFR de distintos países, separados según el rango de potencia como se muestra en la Tabla 6.



Tabla 6 Estándar de emisiones de MMFR en distintos países del mundo.

|         | Rango de<br>potencia | 1196 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2002 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|---------|----------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | P < 8                |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| S       | 8 ≤P≤19              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Unido   | 19 ≤P≤37             |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|         | 37≤P≤56              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| dos     | 56 ≤P≤75             |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| Estados | 75 ≤P≤130            |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|         | 130 ≤P≤225           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|         | 225 ≤P≤450           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|         | 450 ≤P≤560           |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|         | P ≥ 560              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

Fuente: Elaboración propia 2023

Stage II
Stage IIIA
Stage IIIB
Stage IV



Teniendo en consideración que en Chile para la MMFR no existe un reglamento a nivel nacional que permita controlar la entrada de MMFR, ingresa a Chile maquinaria nueva o usada sin importar las emisiones de los contaminantes. Por lo anterior se consideraron los siguientes supuestos:

- 1. El criterio acordado con la industria fue que la maquinaria llegaba a Chile cumpliendo en general la norma de ingreso del país de origen con un retraso de 5 años. (Se considera Tier 4)
- 2. Los estándares de emisiones se asignan con base en el año modelo y la suposición mencionada anteriormente. Se escogen los factores de emisión y metodología EPA.
- 3. Para realizar un peor escenario, se le asigna Tier 2 a la maquinaria que no contaba con año de antigüedad.

#### 3.2.6.- ORIGEN Y ANTIGÜEDAD

En el caso del origen de la maquinaria importada, toda la MMFR incluyó la información en la descripción de la base de datos de la aduana.

Por otra parte, la antigüedad de la maquinaria se asigna de acuerdo con el año de fabricación que se indica en la descripción de la información aduanal. Para los casos dónde no se contaba con esta información, se considera que el año de fabricación es igual al año de importación del país., considerándose el supuesto N°1 y N°3 de la sección 3.2.5.-

#### 3.3.- ASIGNACIÓN GEOGRÁFICA

La información de la maquinaria importada proviene de aduana, la cual corresponde a la información a nivel país. Se consideraron los criterios adoptados en el inventario nacional para poder segmentar la data a la Región Metropolitana de Santiago, en donde se utilizó la misma proporción (se encuentra actualizada para el año 2020). Los criterios adoptados son adoptados según tipo de rubro, como se puede mostrar en la Tabla 7.

Tabla 7 Criterios utilizados para la distribución de la flota dentro de la Región Metropolitana

| Rubro             | Criterio                                                         |
|-------------------|------------------------------------------------------------------|
| Agrícola-Forestal | Superficie sembrada agrícola y superficie forestal y reforestada |
| Construcción      | $m^2$ construidos                                                |



| Rubro      | Criterio                              |
|------------|---------------------------------------|
| Industrial | Trabajadores del sector manufacturero |
| Minería    | Producción regional de cobre          |

Fuente: Inventario nacional y proyecciones de emisiones de maquinaria móvil fuera de ruta (CALAC, 2021)

Considerando lo anterior, se dan a conocer en la Tabla 8 el resumen de porcentaje de participación dentro de la Región Metropolitana con respecto a la base de datos nacional, clasificada según tipo de rubro.

Tabla 8 Porcentaje de participación para la RM

| Rubro             | Participación RM [%] |
|-------------------|----------------------|
| Agrícola-Forestal | 3,6%                 |
| Construcción      | 40%                  |
| Industrial        | 47%                  |
| Minería           | 5,9%                 |

Fuente: Inventario nacional y proyecciones de emisiones de maquinaria móvil fuera de ruta (CALAC, 2021)

Teniendo como base estos supuestos y consideraciones mencionados anteriormente se tiene una participación de 113.102 maquinarias móvil fuera de ruta.

#### 3.4.- INFORMACIÓN FALTANTE Y SUPUESTOS PARA EL CÁLCULO DE EMISIONES

Las emisiones de los contaminantes son calculadas en base a la "Guía metodológica para la estimación de emisiones de maquinaria móvil no de carretera", la cual está basada en la EPA.

Con lo mencionado en las secciones anteriores se tuvieron una gran cantidad de los parámetros necesarios para el cálculo de las emisiones, pero aún mucho de ellos faltaron, como lo es el nivel de actividad de la maquina (cantidad de horas al día que trabaja la maquinaria), nivel de deterioro del motor, factor de ajuste transitorio, entre otros. Dicha información fue rescatada de las fuentes de información primaria, los cuales son:

1. **Horas de operación y factor de carga**: Se utilizaron valores de literatura EPA 2010, mostrados en la Tabla 9.

**Tabla 9.** Horas de operación y factor de carga para la tipología seleccionada.

| Maquinaria  | Nivel de Actividad<br>[horas/año] | Factor de carga |
|-------------|-----------------------------------|-----------------|
| ASFALTADORA | 392                               | 0.66            |
| BARREDORA   | 1220                              | 0.43            |



| Maquinaria                         | Nivel de Actividad<br>[horas/año] | Factor de carga |  |  |
|------------------------------------|-----------------------------------|-----------------|--|--|
| BULLDOZER                          | 899                               | 0.59            |  |  |
| CAMION FUERA DE CARRETERA          | 450                               | 0.8             |  |  |
| CARGARGADOR DE TRONCOS             | 175                               | 0.48            |  |  |
| CARGADOR FRONTAL                   | 761                               | 0.59            |  |  |
| COSECHADORA                        | 1276                              | 0.59            |  |  |
| EXCAVADORA                         | 378                               | 0.59            |  |  |
| GRUA HORQUILLA                     | 1800                              | 0.3             |  |  |
| GRUA TELESCOPICA                   | 384                               | 0.21            |  |  |
| MANIPULADOR                        | 1276                              | 0.59            |  |  |
| MANIPULADOR TELESCOPICO            | 1276                              | 0.59            |  |  |
| MOTONIVELADORA                     | 899                               | 0.59            |  |  |
| OTROS EQUIPOS AGRICOLA             | 124                               | 0.55            |  |  |
| OTROS EQUIPOS DE CONSTRUCCION      | 371                               | 0.48            |  |  |
| OTROS EQUIPOS EN MINAS SUBTERRANEA | 260                               | 0.8             |  |  |
| PERFORADOR                         | 466                               | 0.43            |  |  |
| PLATAFORMA TELESCOPICA             | 1135                              | 0.21            |  |  |
| QUITANIEVE                         | 40                                | 0.34            |  |  |
| RETROEXCAVADORA                    | 1135                              | 0.21            |  |  |
| RODILLO                            | 621                               | 0.62            |  |  |
| TRACTOR                            | 1135                              | 0.21            |  |  |
| TRACTOR AGRICOLA                   | 550                               | 0.62            |  |  |
| ZANJADORA                          | 402                               | 0.66            |  |  |

Fuente: (EPA, 2010)

2. **Factor de deterioro**: Se utilizaron valores de literatura EPA 2018, indicados en la Tabla 10.

**Tabla 10.** Factor de deterioro para los contaminantes.

| Contaminante | Stage II | Stage III + |
|--------------|----------|-------------|
| HC           | 0.034    | 0.027       |
| СО           | 0.101    | 0.151       |
| NOx          | 0.009    | 0.008       |
| PM           | 0.473    | 0.473       |

3. **Factor de ajuste transitorio:** Se utilizaron valores de literatura EPA 2018, tal como se observa en la Tabla 11.



**Tabla 11** Factor de ajuste transitorio para maquinaria móvil fuera de ruta y los distintos contaminantes

| Maquinaria                         | HC (SN-<br>T3) | CO (SN-<br>T3) | NOx<br>(SN-T2) | NOx<br>(Tier 3) | MP<br>(SN-T2) | MP<br>(Tier 3) |
|------------------------------------|----------------|----------------|----------------|-----------------|---------------|----------------|
| BARREDORA                          | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| BULLDOZER                          | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| CAMION FUERA DE CARRETERA          | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| CARGADOR FRONTAL                   | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| MANIPULADOR TELESCOPICO            | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| PLATAFORMA TELESCOPICA             | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| EXCAVADORA                         | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| GRUA TELESCOPICA                   | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| COSECHADORA                        | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| MANIPULADOR                        | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| GRUA HORQUILLA                     | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| RETROEXCAVADORA                    | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.5            |
| MOTONIVELADORA                     | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| QUITANIEVE                         | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| OTROS EQUIPOS AGRICOLA             | 2.3            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| OTROS EQUIPOS EN MINAS SUBTERRANEA | 1.1            | 1              | 1              | 1               | 1             | 1              |
| OTROS EQUIPOS DE CONSTRUCCION      | 1              | 1.5            | 1              | 1               | 1.2           | 1.5            |
| CARGARGADOR DE TRONCOS             | 1.1            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| ASFALTADORA                        | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| PERFORADOR                         | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| RODILLO                            | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |
| TRACTOR                            | 1.1            | 1.5            | 1              | 1               | 1.2           | 1.5            |
| TRACTOR AGRICOLA                   | 1              | 1              | 1              | 1               | 1             | 1              |
| ZANJADORA                          | 2.3            | 2.6            | 1.1            | 1.2             | 2             | 2.4            |

Fuente: (US EPA, 2018)

4. Factor de emisión: Los factores de emisión EPA fueron extraídos del documento Exhaust and Crankcase Emission Factors for Nonroad Compression-Ignition Engines in MOVES2014b [EPA 2018]. Los factores de emisión EEA fueron obtenidos del documento EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. Chapter Non-Road Mobile Sources and Machinery [EEA 2019].



| Potencia<br>del Motor | Tipo de    | BSFC           | BSFC          | Factor d | (g/kW-hr) [F<br>stacionario] | actor de |      |
|-----------------------|------------|----------------|---------------|----------|------------------------------|----------|------|
| (kW)                  | Tecnología | (lb/kW-<br>hr) | (g/kW-<br>hr) | нс       | со                           | NOx      | PM   |
|                       | Tier 0     | 0.55           | 249.48        | 2        | 6.7                          | 13.41    | 1.3  |
|                       | Tier 1     | 0.55           | 249.48        | 1        | 5.5                          | 7        | 0.6  |
| >0 A 8                | Tier 2     | 0.55           | 249.48        | 0.7      | 5.5                          | 5.77     | 0.7  |
|                       | Tier 4A    | 0.55           | 249.48        | 0.7      | 5.5                          | 5.77     | 0.4  |
|                       | Tier 4B    | 0.55           | 249.48        | 0.7      | 5.5                          | 5.77     | 0.4  |
|                       | Tier 0     | 0.55           | 249.48        | 2.3      | 6.7                          | 11.4     | 1.2  |
|                       | Tier 1     | 0.55           | 249.48        | 0.6      | 2.9                          | 6        | 0.4  |
| >8 A 12               | Tier 2     | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 4A    | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 4B    | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 0     | 0.55           | 249.48        | 2.3      | 6.7                          | 11.4     | 1.2  |
|                       | Tier 1     | 0.55           | 249.48        | 0.6      | 2.9                          | 6        | 0.4  |
| >12 A 19              | Tier 2     | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 4A    | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 4B    | 0.55           | 249.48        | 0.6      | 2.9                          | 5.95     | 0.4  |
|                       | Tier 0     | 0.55           | 249.48        | 2.4      | 6.7                          | 9.25     | 1.1  |
|                       | Tier 1     | 0.55           | 249.48        | 0.4      | 2.1                          | 6        | 0.5  |
| >19 A 37              | Tier 2     | 0.55           | 249.48        | 0.4      | 2.1                          | 6.34     | 0.5  |
|                       | Tier 4A    | 0.55           | 249.48        | 0.4      | 2.1                          | 6.34     | 0.3  |
|                       | Tier 4     | 0.55           | 249.48        | 0.18     | 0.21                         | 4.02     | 0.02 |
|                       | Tier 0     | 0.55           | 249.48        | 1.33     | 4.68                         | 9.25     | 0.97 |
|                       | Tier 1     | 0.55           | 249.48        | 0.7      | 3.2                          | 7.51     | 0.6  |
| >37 A 56              | Tier 2     | 0.55           | 249.48        | 0.5      | 3.2                          | 6.3      | 0.3  |
|                       | Tier 4A    | 0.55           | 249.48        | 0.2      | 3.2                          | 4.02     | 0.3  |
|                       | Tier 4     | 0.55           | 249.48        | 0.18     | 0.32                         | 4.02     | 0.02 |
|                       | Tier 0     | 0.55           | 249.48        | 1.33     | 4.68                         | 9.25     | 0.97 |
|                       | Tier 1     | 0.55           | 249.48        | 0.7      | 3.2                          | 7.51     | 0.6  |
| . F.C. A. 7.F         | Tier 2     | 0.55           | 249.48        | 0.5      | 3.2                          | 6.3      | 0.3  |
| >56 A 75              | Tier 3     | 0.55           | 249.48        | 0.2      | 3.2                          | 4        | 0.4  |
|                       | Tier 4     | 0.55           | 249.48        | 0.18     | 0.32                         | 4.02     | 0.01 |
|                       | Tier 4A    | 0.55           | 249.48        | 0.18     | 0.32                         | 0.37     | 0.01 |
|                       | Tier 0     | 0.55           | 249.48        | 0.91     | 3.62                         | 11.24    | 0.54 |
| . 75 4 400            | Tier 1     | 0.55           | 249.48        | 0.5      | 1.2                          | 7.58     | 0.4  |
| >75 A 130             | Tier 2     | 0.55           | 249.48        | 0.5      | 1.2                          | 5.5      | 0.2  |
|                       | Tier 3     | 0.55           | 249.48        | 0.2      | 1.2                          | 3        | 0.3  |



| Potencia<br>del Motor | Tipo de | BSFC           | BSFC          | Factor d |      | (g/kW-hr) [F<br>stacionario] | actor de |
|-----------------------|---------|----------------|---------------|----------|------|------------------------------|----------|
| (kW) Tecnología       |         | (lb/kW-<br>hr) | (g/kW-<br>hr) | нс       | со   | NOx                          | PM       |
|                       | Tier 4  | 0.55           | 249.48        | 0.18     | 0.12 | 3.35                         | 0.01     |
|                       | Tier 4A | 0.55           | 249.48        | 0.18     | 0.12 | 0.37                         | 0.01     |
|                       | Tier 0  | 0.49           | 223           | 0.91     | 3.62 | 11.24                        | 0.54     |
|                       | Tier 1  | 0.49           | 223           | 0.4      | 1    | 7.48                         | 0.3      |
| >130 A 225            | Tier 2  | 0.49           | 223           | 0.4      | 1    | 5.36                         | 0.2      |
| >130 A 223            | Tier 3  | 0.49           | 223           | 0.2      | 1    | 3                            | 0.2      |
|                       | Tier 4  | 0.49           | 223           | 0.18     | 0.1  | 3.35                         | 0.01     |
|                       | Tier 4A | 0.49           | 223           | 0.18     | 0.1  | 0.37                         | 0.01     |
|                       | Tier 0  | 0.49           | 223           | 0.91     | 3.62 | 11.24                        | 0.54     |
|                       | Tier 1  | 0.49           | 223           | 0.3      | 1.8  | 8                            | 0.3      |
| > 22F A 4FO           | Tier 2  | 0.49           | 223           | 0.2      | 1.1  | 6                            | 0.2      |
| >225 A 450            | Tier 3  | 0.49           | 223           | 0.2      | 1.1  | 3                            | 0.2      |
|                       | Tier 4  | 0.49           | 223           | 0.18     | 0.11 | 3.35                         | 0.01     |
|                       | Tier 4A | 0.49           | 223           | 0.18     | 0.11 | 0.37                         | 0.01     |
|                       | Tier 0  | 0.49           | 223           | 0.91     | 3.62 | 11.24                        | 0.54     |
|                       | Tier 1  | 0.49           | 223           | 0.2      | 1.8  | 8                            | 0.3      |
| > 450 A 500           | Tier 2  | 0.49           | 223           | 0.2      | 1.8  | 5                            | 0.2      |
| >450 A 560            | Tier 3  | 0.49           | 223           | 0.2      | 1.8  | 3                            | 0.2      |
|                       | Tier 4  | 0.49           | 223           | 0.18     | 0.18 | 3.35                         | 0.01     |
|                       | Tier 4A | 0.49           | 223           | 0.18     | 0.18 | 0.37                         | 0.01     |
|                       | Tier 0  | 0.49           | 223           | 0.91     | 3.62 | 11.24                        | 0.54     |
|                       | Tier 1  | 0.49           | 223           | 0.4      | 1    | 8                            | 0.3      |
| >560 A 900            | Tier 2  | 0.49           | 223           | 0.2      | 1    | 5                            | 0.2      |
|                       | Tier 4  | 0.49           | 223           | 0.38     | 0.1  | 3.21                         | 0.09     |
|                       | Tier 4A | 0.49           | 223           | 0.18     | 0.1  | 0.62                         | 0.02     |
|                       | Tier 0  | 0.49           | 223           | 0.91     | 3.62 | 11.24                        | 0.54     |
|                       | Tier 1  | 0.49           | 223           | 0.4      | 1    | 8                            | 0.3      |
| > 900                 | Tier 2  | 0.49           | 223           | 0.2      | 1    | 5                            | 0.2      |
|                       | Tier 4  | 0.49           | 223           | 0.38     | 0.1  | 0.62                         | 0.09     |
|                       | Tier 4A | 0.49           | 223           | 0.18     | 0.1  | 0.62                         | 0.02     |

Fuente: (US EPA, 2018)



#### 4.- RESULTADOS

Teniendo en consideración todos los supuestos y consideraciones mencionadas anteriormente los resultados obtenidos para la Región Metropolitana son los siguientes.

## 4.1.- PARTICIPACIÓN SEGÚN CLASIFICACIONES

## 1. Participación de la maquinaria dentro de la RM según rubro

Considerando la base de datos de aduana en donde la información viene a nivel nacional se consideraron lo supuestos de la sección 3.3.- obteniéndose el desglose de las unidades de MMFR según tipo de rubro detalladas en la Tabla 12.

Tabla 12 Participación de MMFR en la Región Metropolitana según tipo de rubro

| Rubro             | Cantidad [Unidades] |
|-------------------|---------------------|
| Agrícola-Forestal | 3584                |
| Construcción      | 70559               |
| Industrial        | 38527               |
| Minería           | 432                 |

Fuente: Elaboración propia 2023

Además, se puede observar en el Figura 1 que la mayor cantidad de maquinaria está enfocada en el rubro de la construcción con 70.559 maquinarias correspondientes al 62% de la flota a nivel regional, le sigue el rubro industrial con el 34%.



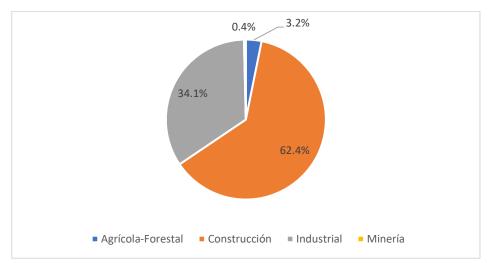



Figura 1. Participación de MMFR dentro de RM según rubro (Elaboración propia)

#### 2. Participación de la maquinaria según potencia

La distribución y participación porcentual de la maquinaria de acuerdo con los rangos de potencia de la base de datos de aduana (a nivel nacional) se muestran en la Tabla 13. Considerando el supuesto tomado en la sección 3.2.2.- .

Tabla 13 Participación de la flota según tipo de rango de potencia.

| Rango de potencia [kW] | Cantidad [Unidades] | Participación [%] |
|------------------------|---------------------|-------------------|
| Menor a 19             | 25270               | 6.9               |
| ≥19 - < 37             | 37840               | 10.4              |
| ≥37 - < 56             | 43955               | 12.0              |
| ≥56 - < 75             | 35630               | 9.8               |
| ≥75 - < 130            | 20113               | 5.5               |
| ≥130 - < 225           | 9287                | 2.5               |
| ≥225 - <450            | 23852               | 6.5               |
| ≥450 - < 560           | 6065                | 1.7               |
| ≥560                   | 162984              | 44.7              |

Fuente: Elaboración propia 2023

El mayor porcentaje de participación es de la MMFR con potencia mayor a 560 [kW] con un 45% con 162.984 unidades de MMFR, esto se puede ver con más claridad en la Tabla 13.



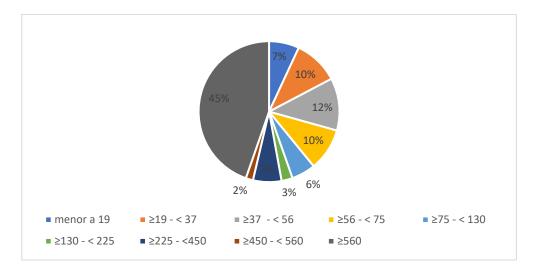



Figura 2 Participación de la flota según rango de potencia (Elaboración propia)

#### 3. Participación de la maquinaria según tipo de tecnología

Considerándose la normativa de Estados Unidos, se tiene en una primera instancia el supuesto de asignación a Tier 2 para la MMFR que no contaba con información de edad de maquinaria dentro de la base de datos de la aduana. Considerando esto se tienen 290.516 unidades de maquinarias correspondiente al 80% con tecnología Tier 2 (Tabla 14 y Figura 3).

Tabla 14 Participación de la maquinaria según tipo de tecnología (supuesto Tier 2)

| Clasificación   | Cantidad [Unidades] | Participación [%] |  |
|-----------------|---------------------|-------------------|--|
| Tier 0 y Tier 1 | 5225                | 1.4               |  |
| Tier 2          | 290516              | 79.6              |  |
| Tier 3          | 4603                | 1.3               |  |
| Tier 4          | 10689               | 2.9               |  |
| Tier 4A         | 53963               | 14.8              |  |
| Total           | 364995              | 100               |  |



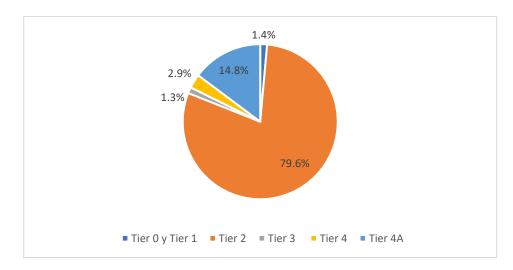



Figura 3 Participación de la maquinaria según tipo de tecnología (supuesto Tier 2) – Elaboración propia

Considerando el anterior supuesto, la mayor participación es del rubro de la construcción con 152.919 MMFR con tecnología Tier 2.

Tabla 15 Participación de la maquinaria según tipo de tecnología y rubro (supuesto Tier 2)

| Clasificación   | Construcción | Industrial | Minería | Agrícola-Forestal |
|-----------------|--------------|------------|---------|-------------------|
| Tier 0 y Tier 1 | 1844         | 447        | 201     | 3613              |
| Tier 2          | 152919       | 27544      | 4283    | 53748             |
| Tier 3          | 1245         | 727        | 20      | 3993              |
| Tier 4          | 10764        | 37462      | 436     | 23260             |
| Tier 4A         | 9626         | 15792      | 2400    | 14672             |
| Total           | 176398       | 81972      | 7340    | 99286             |

Fuente: Elaboración propia 2023

Este escenario, también fue realizado considerando el supuesto de asignación Tier 4, en donde la maquinaria llega nueva y con la mejor tecnología, la información detallada se encuentra en la Tabla 16.

Tabla 16 Participación de la maquinaria según tipo de tecnología y rubro (supuesto Tier 4)

| Clasificación   | Construcción | Industrial | Minería | Agrícola-Forestal |
|-----------------|--------------|------------|---------|-------------------|
| Tier 0 y Tier 1 | 2130         | 342        | 128     | 3603              |
| Tier 2          | 1709         | 317        | 93      | 1130              |
| Tier 3          | 1161         | 173        | 31      | 1276              |
| Tier 4          | 3575         | 675        | 209     | 2603              |
| Tier 4A         | 33520        | 6358       | 2477    | 31966             |
| Total           | 42095        | 7865       | 2938    | 40578             |



# 4. Participación de la maquinaria según origen

La mayor participación fue de los países europeos con un 38% (123.922 unidades de MMFR), esto se puede ver con más detalle en la Tabla 17 y Figura 4.

Tabla 17 Participación de la maquinaria según origen (Elaboración propia)

| País   | Cantidad [Unidades] | Participación [%] |
|--------|---------------------|-------------------|
| EE. UU | 44905               | 12.3              |
| Brasil | 14439               | 4.0               |
| China  | 64860               | 17.8              |
| Japón  | 26811               | 7.3               |
| Europa | 137922              | 37.8              |
| Otros  | 76058               | 20.8              |
| Total  | 364995              | 100.00            |

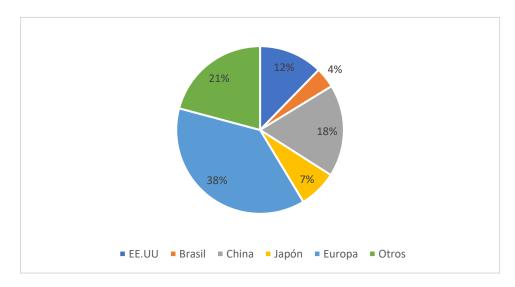



Figura 4 Participación de la maquinaria según origen (Elaboración propia 2023)



#### 4.2.- EMISIONES

Uno de los parámetros importantes para el cálculo es el tipo de tecnología, dentro de la flota existía mucha data sin asignación (77%) en donde se utiliza un supuesto para asignarle clasificación, para llegar a un escenario comparativo, las emisiones fueron comparadas por cálculos del Tier 2 (Tabla 19) y Tier 4 (Tabla 18).

**Tabla 18** Emisiones en [ton/año] en la Región Metropolitana, clasificado por tipo de rubro utilizando supuesto de Tier 4

|                   | MPS  | НС    | NOX    | СО    | SO2  | Unidades |
|-------------------|------|-------|--------|-------|------|----------|
| Agrícola-Forestal | 88   | 205   | 921    | 509   | 13   | ton/año  |
| Construcción      | 3460 | 12689 | 34187  | 18775 | 834  | ton/año  |
| Industrial        | 5487 | 18616 | 81354  | 24914 | 1838 | ton/año  |
| Minería           | 16   | 64    | 142    | 82    | 3    | ton/año  |
| TOTAL             | 9051 | 31575 | 116605 | 44280 | 2688 | ton/año  |

Fuente: Elaboración propia 2023

**Tabla 19** Emisiones en [ton/año] en la Región Metropolitana, clasificado por tipo de rubro utilizando supuesto de Tier 2

|                   | MPS   | НС    | NOX    | СО     | SO2  | Unidades |
|-------------------|-------|-------|--------|--------|------|----------|
| Agrícola-Forestal | 150   | 139   | 1687   | 778    | 7    | ton/año  |
| Construcción      | 11864 | 9677  | 134935 | 68347  | 586  | ton/año  |
| Industrial        | 10821 | 8583  | 129505 | 44573  | 843  | ton/año  |
| Minería           | 43    | 41    | 397    | 219    | 2    | ton/año  |
| TOTAL             | 22878 | 18440 | 266523 | 113917 | 1438 | ton/año  |



Para ambas consideraciones tomadas las emisiones más altas son para  $NO_X$ , cuando se consideró el supuesto de Tier 4 alcanza el 52%, lo que equivale a 116.605 [ton/año], para CO un 20% lo que corresponde a 44.280 [ton/año], se puede observar con más detalle en la Figura 5. Por otra parte, al considerar el supuesto de Tier 2,  $NO_X$  tiene una participación del 58% equivalente a 266.523 [ton/año].

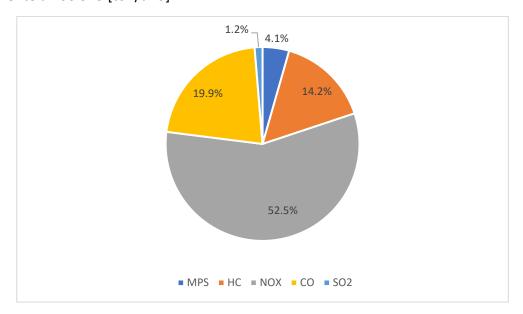



Figura 5 Distribución de emisiones dentro de la RM para MMFR (Utilizando supuesto de Tier 4) – Fuente: Elaboración propia

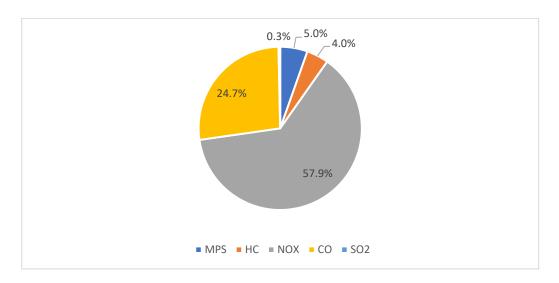



Figura 6 Distribución de emisiones dentro de la RM para MMFR (Utilizando supuesto de Tier 2) – Fuente: Elaboración propia

Comparando las emisiones de  $NO_X$  para ambos supuestos a nivel regional, se tiene la representación de la Figura 7.



Además, se presenta en la Figura 8 y Figura 9 las emisiones por tipo de rubro para cada uno de los supuestos mencionados anteriormente.

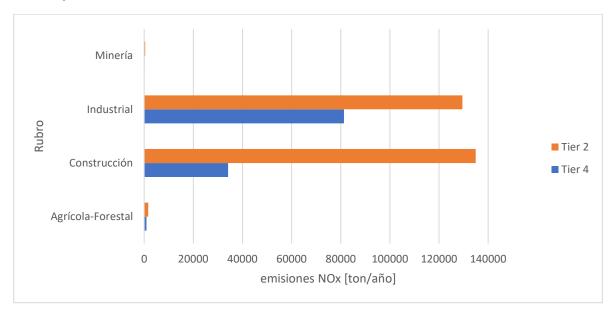
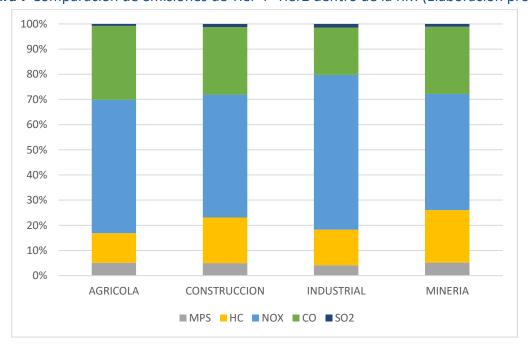
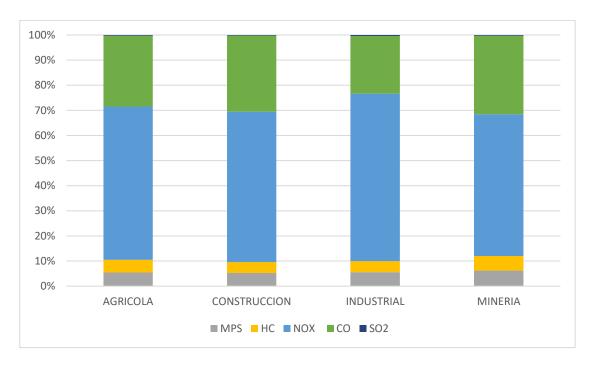





Figura 7 Comparación de emisiones de Tier 4- Tier2 dentro de la RM (Elaboración propia)



**Figura 8** Distribución de las emisiones de MMFR según rubro dentro de la RM, utilizando supuesto de Tier 4 (Elaboración propia).





**Figura 9** Distribución de las emisiones de MMFR según rubro dentro de la RM, utilizando supuesto de Tier 2 (Elaboración propia).



#### 5.- CONCLUSIONES

De los resultados obtenidos del inventario de maquinaria móvil fuera de ruta se concluye que:

- Se determinaron las emisiones que se generaron en el periodo 2010-2021 dentro de la Región Metropolitana, en base a la base de datos de aduana. Utilizando como base de supuestos el inventario nacional de CALAC+ realizado el año 2020, alcanzándose las mayores concentraciones de NO<sub>x</sub>, con 116.605 [ton/año] y 266.523 [ton/año] utilizando supuesto Tier 4 y Tier 2 para el nivel de tecnología, respectivamente.
- Se determinó el porcentaje de participación a nivel regional por tipo de rubro, en donde el rubro de la construcción alcanza 70.559 unidades de MMFR, lo que corresponde al 62% del total de la flota de la región. Además, la mayor participación del rango de potencia para toda la base de datos de aduana de MMFR corresponde a potencias mayores a 560 [kW].
- Se logra demostrar la relevancia en la toma de supuestos utilizados para el cálculo del inventario de emisiones, considerando que en Chile ingresa maquinaria sin restricción, la flota no siempre cumple con las normativas del país, o bien no siempre son nuevas (esto también es validado por las encuestas realizas a las distribuidoras).



#### 6.- BIBLIOGRAFÍA

- CALAC+. (2020). GUÍA METODOLÓGICA PARA LA CONSTRUCCIÓN DEL INVENTARIO DE MAQUINARIA MÓVIL NO DE CARRETERA (Estimación de la población de maquinaria). https://programacalac.com/publicaciones/guia-metodologica-para-la-estimacion-de-emisiones-de-maquinaria-movil-no-de-carretera-calculo-de-emisiones-del-inventario/
- CALAC. (2021). Inventario Nacional y Proyecciones de Emisiones de Maquinaria Móvil Fuera de Ruta.
- EPA. (2010). Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling. *EPA-420-R-10-016. NR-005d. U.S. Environmental Protection Agency*, 1–47.
- MMA. (2019). Guía metodológica para la estimación de emisiones provenientes de fuentes puntuales Ministerio del Medio Ambiente.
- Ole Kenneth, N. (2019). EMEP/EEA air pollutant emission inventory guidebook 2019: Technical guidance to prepare national emission inventories. *EEA Technical Report*, 12/2019. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019
- US EPA. (2018). Exhaust and Crankcase Emission Factors for Nonroad Compression Ignition Engines in MOVES2014b. *EPA-420-R-18-009. U.S. Environmental Protection Agency*, 177.